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Part I

K-Nearest Neighbor
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What is Image Classification?

4

Image Classifier

Learned Features
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The Problem: Semantic Gap
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What the computer sees
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Challenges: Viewpoint variation
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Other Challenges
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DeformationIllumination Occlusion
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How to Classify Images?
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n Data-Driven Approach

n Collect a dataset of images and labels

n Use Machine Learning to train a classifier

n Evaluate the classifier on new images
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Naïve Imager Classifier: Nearest Neighbor

9

Memorize training data

For each test image: 
§ Find closest train image
§ Predict label of nearest image

Distance Metric:

𝑑+ 𝐼+, 𝐼. =0
1

𝐼+
1 − 𝐼.

1
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Instead of copying label from nearest neighbor, take majority vote from K closest points.

k=1 k=3 k=5

Naïve Imager Classifier: K-Nearest Neighbor



Naïve Imager Classifier: Nearest Neighbor
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K-Nearest Neighbors: Distance Metrics
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L1 (Manhattan) distance

𝑑+ 𝐼+, 𝐼. =0
1

𝐼+
1 − 𝐼.

1

L2 (Euclidean) distance

𝑑. 𝐼+, 𝐼. = 0
1

𝐼+
1 − 𝐼.

1 .



K-Nearest Neighbors: Hyperparameters
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n What is the best value of k to use?

n What is the best distance to use?

n These are hyperparameters: choices about the algorithm that we set 

rather than learn

n Very problem-dependent.

n Must try them all out and see what works best.



K-Nearest Neighbors: Hyperparameters
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n Idea #1: Choose hyperparameters that work best on the data

n Idea #2: Split data into train and test, choose hyperparameters that work 

best on test data

n Idea #3: Split data into train, validation, and test; choose hyperparameters 

on validation and evaluate on test

Your Dataset

Train Test

Train TestVal.

BAD: K = 1 always works perfectly on training data

BAD: No idea how algorithm will perform on new data

Better!



K-Nearest Neighbors: Hyperparameters
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n Idea #4: Cross-Validation: Split data into folds, try each fold as validation 

and average the results

TestFold 6Fold 2 Fold 3 Fold 4 Fold 5Fold 1

TestFold 6Fold 2 Fold 3 Fold 4 Fold 5Fold 1

TestFold 6Fold 2 Fold 3 Fold 4 Fold 5Fold 1

Note: Useful for small datasets, but not used too frequently in deep learning



Drawbacks of K-Nearest Neighbors
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n k-Nearest Neighbor on images never used

n Very slow at test time

n Distance metrics on pixels are not informative

TintedShiftedOriginal



Drawbacks of K-Nearest Neighbors
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n k-Nearest Neighbor on images never used

n Very slow at test time

n Distance metrics on pixels are not informative

n Curse of dimensionality

Dimension = 1
Points = 4

Dimension = 2
Points = 42

Dimension = 3
Points = 43



K-Nearest Neighbors: Summary
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n In image classification we start with a training set of images and labels, 

and must predict labels on the test set;

n The K-Nearest Neighbors classifier predicts labels based on nearest 

training examples;

n Distance metric and K are hyperparameters;

n Choose hyperparameters using the validation set; only run on the test set 

once at the very end.



Part II

Linear Classifier
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Linear Classifier
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Recall CIFAR 10

50,000 training images of sizes 32x32x3
10,000 test images.

f(x, W)

Image

10 numbers giving 
class scores

Parameters 
or weights

Array of 32x32x3 numbers
3072 numbers in total



Linear Classifier
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Array of 32x32x3 numbers
3072 numbers in total

f(x, W)

Image

10 numbers giving 
class scores

Parameters 
or weights

f(x, W)= W x + b
3072 x 1

10 x 3072

10 x 1

10 x 1



An Example of Linear Classifier
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56 231

24 2

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

56

231

24

2

x +

1.1

3.2

-1.2

=

-96.8

437.9

61.95

Cat Score

Dog Score

Ship Score



Linear Classifiable
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n Not Linearly Classifiable Cases



Part III

Loss Functions and Optimization
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Things TODO in Linear Classifier
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n Quantify the Classification Scores

n Loss Function

n Find the Parameters Effectively

n Optimization



Loss Functions
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n What is Loss Function?

n A loss function tells how good our current classifier is.

n Given a dataset of examples: 𝑥4, 𝑦4 46+
7

n Loss over the dataset is a sum of loss over examples:

𝐿 =
1
𝑁0

4

𝐿4(𝑓 𝑥4,𝑊 , 𝑦4)



Regularization
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𝐿 =
1
𝑁
0
4

𝐿4(𝑓 𝑥4,𝑊 , 𝑦4)

Data Loss : Model predictions should 
match training data

+ 𝜆𝑅(𝑊)
Regularization: Model should be "simple", 

so it works on test data

Occam's Razor:
"Among competing hypotheses, 
the simplest is the best"
William of Ockham, 1285 - 1347



Regularization
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n Common Regularization

n L2 Regularization: 𝑅 𝑊 = ∑B6C
1 𝛽B.

n L1 Regularization: 𝑅 𝑊 = ∑B6C
1 𝛽B

n Elastic net (L1 + L2): 𝑅 𝑊 = 𝛼∑B6C
1 𝛽B. + ∑B6C

1 𝛽B

n Max norm regularization

n Dropout

n Fancier: Batch normalization, stochastic depth



Softmax Classifier
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n Scores = unnormalized log probabilities of the classes

𝑃 𝑌 = 𝑘 𝑋 = 𝑥4 = JKL
∑M J

KM where 𝑠 = 𝑓(𝑥4,𝐖)

Want to maximize the log likelihood (loss function) to minimize the 

negative log likelihood of the correct class:

𝐿4 = − log 𝑃(𝑌 = 𝑦4|𝑋 = 𝑥4)

n In Summary:

3.2

5.1

-1.7

Cat Score

Dog Score

Ship Score
𝐿4 = − log(

𝑒UVW
∑B 𝑒

UM)



Softmax Classifier
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3.2

5.1

-1.7

Cat

Dog

Ship

unnormalized log 
probabilities

24.5

164.0

0.18

0.13

0.87

0.00

unnormalized
probabilities

exp normalize

normalized
probabilities

𝐿4 = − log(
𝑒UVW
∑B 𝑒

UM)

𝐿4 = − log 0.87
= 0.06



Optimization
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n How to find the best W and b?

𝐿

𝐖
b



Optimization: Gradient Decent
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n Stochastic Gradient Descent (SGD)

n L W = +
^
∑_6+^ L_(x_, y_,W) + λR W

n ∇eL W = +
^
∑_6+^ ∇eL_ x_, y_,W + λ∇eR(W)

# Vanilla Minibatch Gradient Descent

while True:

data_batch = sample_training_data(data, 64)

weights_grad = eval_gradient(loss_func, data_batch, weights)

weights -= weights_grad * learning_rate



Part IV

Backpropagation and Neural 
Networks
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Backpropagation
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n How to get the gradient?

n 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 𝑧

n Given x = -2, y = 5, z = -4

n 𝑞 = 𝑥 + 𝑦 hi
hj
= 1 hi

hk
= 1

n 𝑓 = 𝑞𝑧 hl
hi
= 𝑧 hl

hm
= 𝑞

n
hl
hj
= hl

hi
hi
hj

hl
hk
= hl

hi
hi
hk

+

*

x

y

z

q

f

-2

5

-4

3

-12

𝜕𝑓
𝜕𝑓 = 1

𝜕𝑓
𝜕𝑧 = 𝑞 = 3

−4

−4

−4



Backpropagation
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n 𝑓 W, x = +
+pJq rstsurvtvurw

+

*

* + *-1 exp +1 1/x

𝑤C

𝑥C

𝑤+

𝑥+

𝑤.

2.00

-1.00

-3.00

-2.00

-3.00

-2.00

6.00

4.00

1.00 -1.00 0.37 1.37 0.73

1.00-0.53
𝜕𝑦
𝜕𝑥 = −

1
𝑥.

-0.53
𝜕𝑦
𝜕𝑥 = 𝑥

-0.20
𝜕𝑦
𝜕𝑥

= 𝑒j
0.20
hk
hj = −1

0.20
hk
hj =1

0.20
hk
hj =1

0.20
hk
hj =1

0.20
hk
hj =1

-0.20

0.40

-0.40

-0.60

𝜎 𝑥 =
1

1 + 𝑒zjSigmoid Function:



Backpropagation
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n Let 𝑧 = 𝑥 + 𝑦. What if 𝑥 and 𝑦 are vectors?

n 𝑥 = (𝑥+, 𝑥.), 𝑦 = (𝑦+, 𝑦.)

n 𝑧 = (𝑥+ + 𝑦+, 𝑥. + 𝑦.)

n
hmv
hjv

= 1, hmv
hjw

= 0, hmw
hjv

= 0, hmv
hjw

= 1

n
hm
hj
=

hmv
hjv

hmv
hjw

hmw
hjv

hmv
hjw

= 1 0
0 1 Jacobian matrix



Backpropagation
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n Let y = max(0, 𝑥) and 𝑥 is a vector of size 4096. What is the size of the 

Jacobian matrix?

n 4096×4096

n What the size of the Jacobian matrix if we use a minibatch of size 100?

n 409600×409600

n What does the Jacobian matrix look like?

n

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1



Backpropagation
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n 𝑓 𝑥,𝐖 = 𝐖𝑥 . = ∑46+� W𝑥 4
.

*

W

X

q

0.1 0.5
−0.3 0.8

0.2
0.4

f
0.22
0.26 0.116

1.00

𝑓 𝑞 = 𝑞 . = 𝑞+. + 𝑞.. + ⋯+ 𝑞�.

𝜕𝑓
𝜕𝑞4

= 2𝑞4

0.44
0.52

𝑞 =
𝑞+
⋮
𝑞�

= 𝐖𝑥 =
𝑊(+,+)𝑥+ + ⋯+𝑊(+,�)𝑥�

⋮
𝑊(�,+)𝑥+ + ⋯+𝑊(�,�)𝑥�

𝜕𝑞�
𝜕𝑊(4,B)

= 𝟏�64𝑥B
𝜕𝑓

𝜕𝑊(4,B)
= 𝟏�64𝑥B � 2q_

0.088 0.176
0.104 0.208

−0.112
0.636

𝜕𝑞�
𝜕𝑥4

= 𝑊(�,4)
𝜕𝑓
𝜕𝑥4

=0
�

𝜕𝑓
𝜕𝑞�

𝜕𝑞�
𝜕𝑥4

= ∑� 2𝑞�𝑊(�,4)

L2



Neural Networks
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n Linear Score Function

n 𝑓 = 𝐖𝑥

n 2-Layer Neural Network

n 𝑓 = 𝐖𝟐 max(0,𝐖𝟏𝑥)

n 3-Layer Neural Network

n 𝑓 = 𝐖𝟑max(𝐖𝟐 max(0,𝐖𝟏𝑥))



Neural Networks
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Cell body

dendrite

axon

presynaptic
terminal

Impulses

Impulses carried away 
from cell body



Neural networks: Architectures
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n “2-layer Neural Net”

n “1-hidden-layer Neural Net”

n “3-layer Neural Net”

n “2-hidden-layer Neural Net”

Fully Connected Layers



Part V

Convolutional Neural Networks
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Important Events of CNNs
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n LeNet-5

n Used for Document Classification (1998)

n AlexNet

n Used for Image Classification (2012)



Fast-forward to Today: CNNs are Everywhere
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1.3 million high-resolution images
1,000 categories

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 (GoogLeNet) Human 2015 (ResNet) 2016 (GoogLeNet-v4)

ImageNet Classification Error (Top 5)



Fast-forward to Today: CNNs are Everywhere
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n Image Classification



Fast-forward to Today: CNNs are Everywhere
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n Object Detection in 2D/3D



Fast-forward to Today: CNNs are Everywhere
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n Semantic Segmentation



Fast-forward to Today: CNNs are Everywhere
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n Pose Estimation



Fast-forward to Today: CNNs are Everywhere
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n Image Super Resolution



Fast-forward to Today: CNNs are Everywhere
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n Depth Estimation



Recap: Fully Connected Layer
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n Given an image of size 32×32×3

1 number
the result of taking a dot product between a 
row of W and the input (a 3072-dimensional 
dot product)



Convolutional Layer
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32×32×3 Image

5×5×3 Filter

Convolve the filter with the image
i.e. “slide over the image spatially, 

computing dot products”

Filters always extend the full 
depth of the input volume



Convolutional Layer
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32×32×3 Image

5×5×3 Filter

1 number
the result of taking a dot product between the filter and a small 
5×5×3 chunk of the image
(i.e. 75-dimensional dot product + bias)



Convolutional Layer
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32×32×3 Image

5×5×3 Filter convolve (slide) over 
all spatial locations

28×28×1
Feature Map
28×28×2

Feature Map
28×28×3

Feature Map
28×28×4

Feature Map

Conclusion: If we have 4 5×5×3 filters, we can get 4 separate feature maps.

The number of parameters of the convolutional layer is 5×5×3×4 + 5×3×4 = 360.



Convolutional Layer
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Assume the input is of size 7×7, 

and the filter is of size 3×3.

With Stride = 1:

Output size is 5×5.

With Stride = 2:

Output size is 3×3.

With Stride = 3:

Cannot apply 3×3 filter on 7×7 input with stride 3.

Output Size= (Input Size – Filter Size) / Stride + 1



Convolutional Layer
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0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

Sometimes, we pad zeros to the border.

Assume the input is of size 7×7, 

and the filter is of size 3×3.

With Stride = 3 and pad = 1

Output size is 3×3.

UPDATE:

Output Size = 

(Input Size – Filter Size + 2 * Padding) / Stride + 1



Convolutional Neural Networks
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n ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

n Shrinking too fast is not good, doesn’t work well.



Convolutional Neural Networks
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Low-level Features

High-level Features



Pooling Layer
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0 1 2 3

5 6 7 8

3 2 1 3

0 1 3 4

6 8

3 4
Max Pooling
Kernel Size = 2
Stride = 2

3 5

1.5 4

Avg. Pooling
Kernel Size = 2
Stride = 2



How to Train a Neural Network?
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n Babysitting the Learning Process

n Data Preprocessing

n Choose the architecture (Convolutional Layers, Activation functions, Losses)

n Weights initialization

n Optimizers used for updating parameters

n Optional

n Data Augmentation

n Batch Normalization

n Dropout



Data Preprocessing
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n Normalize



Activation Functions
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n Sigmoid

n 𝜎 𝑥 = +
+pJqt

n ReLU
n 𝑓 𝑥 = max(0, 𝑥)

n Leaky ReLU
n 𝑓 𝑥 = max(0.01𝑥, 𝑥)

n ELU

n 𝑓 𝑥 = �𝑥 𝑥 ≥ 0
𝛼 𝑒j − 1 𝑥 < 0

Sigmoid

ReLU

Leaky ReLU

ELU



Activation Functions
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n Sigmoid

n 𝜎 𝑥 = +
+pJqt

n Squashes numbers to range [0,1]

n Issues
n Saturated neurons “kill” the gradients

n Sigmoid outputs are not zero-centered

n exp() is a bit compute expensive



Activation Functions
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n ReLU
n 𝑓 𝑥 = max(0, 𝑥)

n Characteristics
n Very computationally efficient

n Converges much faster than sigmoid/tanh in practice (e.g. 6x)

n Issues
n Not zero-centered output

n dead ReLU



Activation Functions
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n Leaky ReLU
n 𝑓 𝑥 = max(0.01𝑥, 𝑥)

n Characteristics
n Does not saturate

n Very computationally efficient

n Converges much faster than sigmoid/tanh in practice (e.g. 6x)

n will not “die”



Activation Functions
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n ELU

n 𝑓 𝑥 = �𝑥 𝑥 ≥ 0
𝛼 𝑒j − 1 𝑥 < 0

n Characteristics
n All benefits of ReLU

n Closer to zero mean outputs

n Negative saturation regime compared with Leaky ReLU adds some robustness to 
noise

n Issues
n Computation requires exp()



Weights Initialization
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n What if all the initial values are set to 0?

n Output the same thing and have the same gradient.

n What if initial values are samples from a Gaussian distribution 𝜎(0, 0.01)?

n Works small for small networks, but problems with deeper networks.

n How to solve the problem?

n Xavier initialization

n Kaiming initialization

n …



Batch Normalization
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n “Do you want unit gaussian activations? just make them so.”

n Consider a batch of activations at some layer. To make each dimension unit 

gaussian, apply:

�𝑥� =
𝑥� − E 𝑥�

Var[𝑥�]

22
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Note: BNs are usually inserted after Fully 
Connected or Convolutional layers, and 
before nonlinearity.



Batch Normalization
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n Improves gradient flow through the network

n Allows higher learning rates

n Reduces the strong dependence on 

initialization

n Acts as a form of regularization in a funny 

way, and slightly reduces the need for 

dropout, maybe



Babysitting the Training Process
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n Choose a Proper Learning Rate n Overfitting



Optimizers
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n SGD

n 𝑔� = ∇��qv𝑓(𝜃�z+)

n ∇��= −𝜂𝑔�

n SGD + Momentum

n 𝑚� = 𝜇𝑚�z+ + 𝑔�

n ∇𝜃�= −𝜂𝑚�

n Typically, 𝜇 = 0.9 or 0.99

n Problems with SGD

Local Minima

Saddle Point



Optimizers
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n AdaGrad

n 𝑛� = 𝑛�z+ + 𝑔�.

n ∇𝜃� = − �
��p�

� 𝑔�

n RMSProp

n 𝑛� = 𝑣𝑛�z+ + 1 − 𝑣 𝑔�.

n ∇𝜃� = − �
��p�

� 𝑔�

n Adam

n 𝑚� = 𝜇𝑚�z+ + 1 − 𝜇 𝑔�

n 𝑛� = 𝑣𝑛�z+ + (1 − 𝑣)𝑔�.

n �𝑚� =
��
+z��

n �𝑛� =
��
+z �

n ∇𝜃� = − ���
���p�

� 𝜂



Thank You!


