

Deep Learning Fundamentals

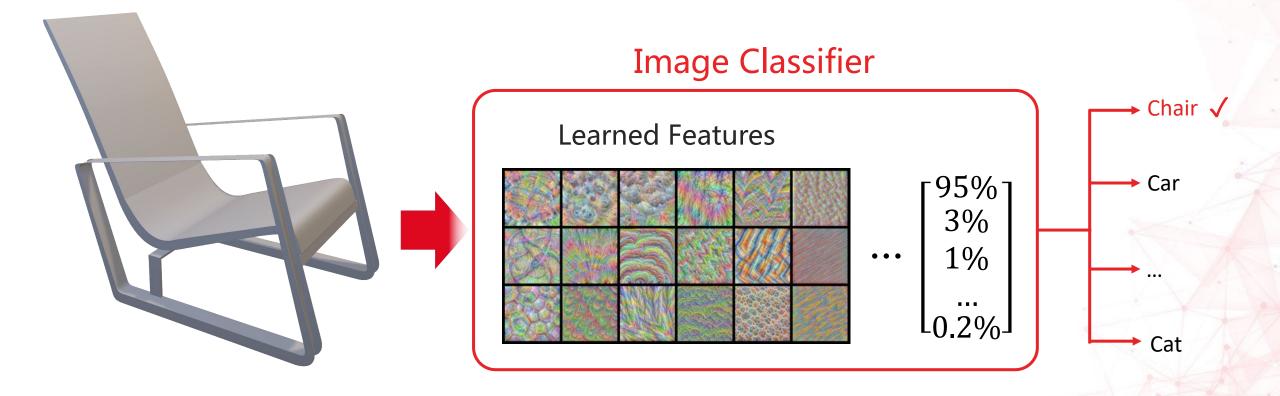
Haozhe Xie cshzxie@gmail.com

Outline

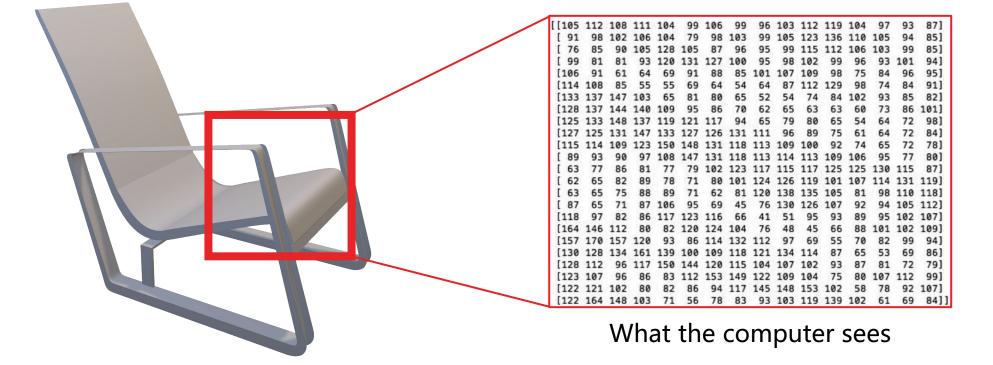
- Part I K-Nearest Neighbor
- Part II Linear Classifier
- Part III Loss Functions and Optimization
- Part IV Backpropagation and Neural Networks
- Part V Convolutional Neural Networks

Part I K-Nearest Neighbor

What is Image Classification?



The Problem: Semantic Gap



Challenges: Viewpoint variation

 \bigtriangledown

Other Challenges

Illumination

Deformation

Occlusion

0

How to Classify Images?

Data-Driven Approach

- Collect a dataset of images and labels
- Use Machine Learning to train a classifier
- Evaluate the classifier on new images

-	
airplane	🛁 🚳 😹 📈 🍬 = 🛃 🚳 🛶 i
automobile	ar 📽 🚵 🤮 🐭 😻 😂 📹 🕯
bird	in 🔁 💋 🐒 🗶 🖉 🔝 🔝 🕺
cat	li 🖉 🥶 🔤 🎇 🙋 🕰 🥪 I
deer	M 🐨 🥁 🥽 🎆 💓 😭 📰
dog	1983 📶 🦟 🚳 🤮 🎆 🔊 🦄 🕅 🕽
frog	ST 🖉 😒 😂 🗐 St 😻
horse	🕌 🏍 🐲 🚵 🕅 📷 🖙 🍇 i
ship	🚝 🥸 🚈 📥 📛 🗫 🏄 🖉 🖉
truck	i i i i i i i i i i i i i i i i i i i

Naïve Imager Classifier: Nearest Neighbor

import numpy as np

class NearestNeighbor: def __init__(self): pass

def train(self, X, y):

""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

def predict(self, X):

""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]

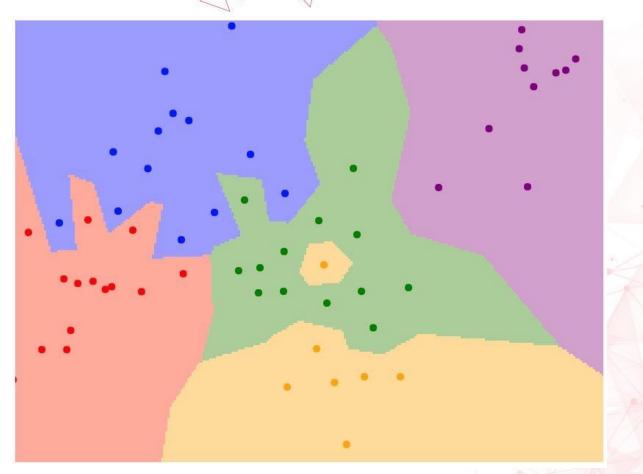
lets make sure that the output type matches the input type
Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

loop over all test rows

for i in xrange(num_test):

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

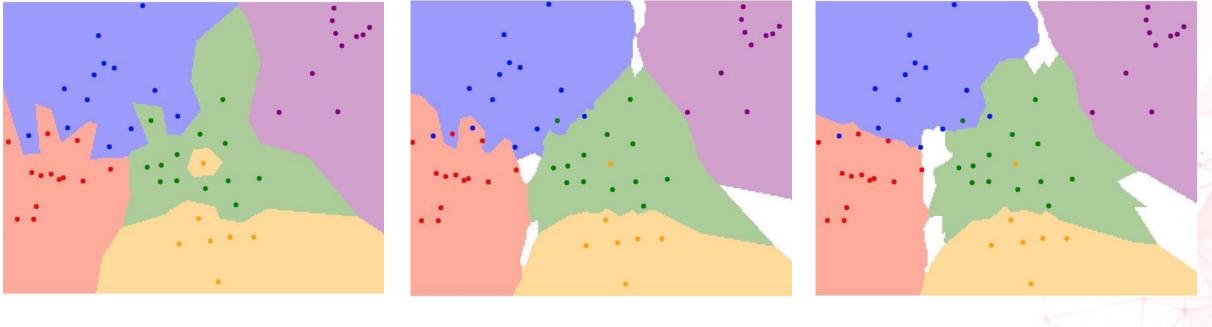


Distance Metric:

$$d_1(I_1, I_2) = \sum_p \left| I_1^p - I_2^p \right|$$

Naïve Imager Classifier: K-Nearest Neighbor

Instead of copying label from nearest neighbor, take majority vote from K closest points.

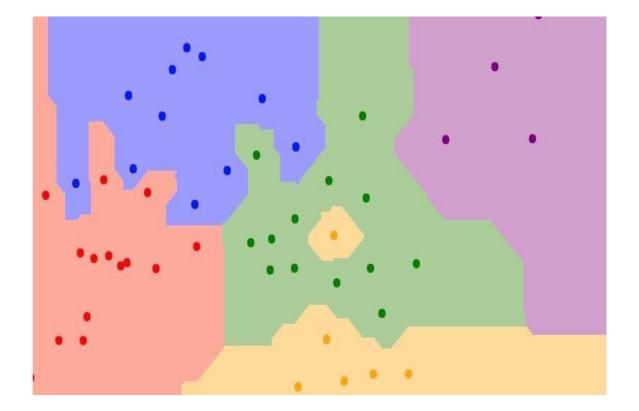


k=1

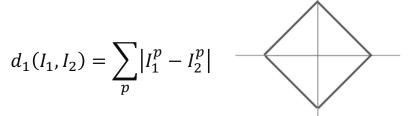
k=3

Naïve Imager Classifier: Nearest Neighbor

K-Nearest Neighbors: Distance Metrics



L1 (Manhattan) distance





 \bigtriangledown

L2 (Euclidean) distance

$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$

July 2, 2019

Deep Learning Fundamentals

K-Nearest Neighbors: Hyperparameters

- What is the best value of k to use?
- What is the best distance to use?

- These are hyperparameters: choices about the algorithm that we set rather than learn
- Very problem-dependent.
- Must try them all out and see what works best.

K-Nearest Neighbors: Hyperparameters

- Idea #1: Choose hyperparameters that work best on the data
 - BAD: K = 1 always works perfectly on training data
- Idea #2: Split data into train and test, choose hyperparameters that work best on test data
 - BAD: No idea how algorithm will perform on new data
- Idea #3: Split data into train, validation, and test; choose hyperparameters on validation and evaluate on test
 Better!

K-Nearest Neighbors: Hyperparameters

Idea #4: Cross-Validation: Split data into folds, try each fold as validation

and average the results

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Test
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Test
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Fold 6	Test

Note: Useful for small datasets, but not used too frequently in deep learning

Drawbacks of K-Nearest Neighbors

- k-Nearest Neighbor on images never used
 - Very slow at test time
 - Distance metrics on pixels are not informative

Original

Shifted

Tinted

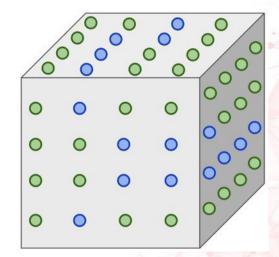
Drawbacks of K-Nearest Neighbors

- k-Nearest Neighbor on images never used
 - Very slow at test time
 - Distance metrics on pixels are not informative
 - Curse of dimensionality

Dimension = 1 Points = 4

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Dimension = 2 Points = 4^2



Dimension = 3Points = 4^3

K-Nearest Neighbors: Summary

- In image classification we start with a training set of images and labels, and must predict labels on the test set;
- The K-Nearest Neighbors classifier predicts labels based on nearest training examples;
- Distance metric and K are hyperparameters;
- Choose hyperparameters using the validation set; only run on the test set once at the very end.

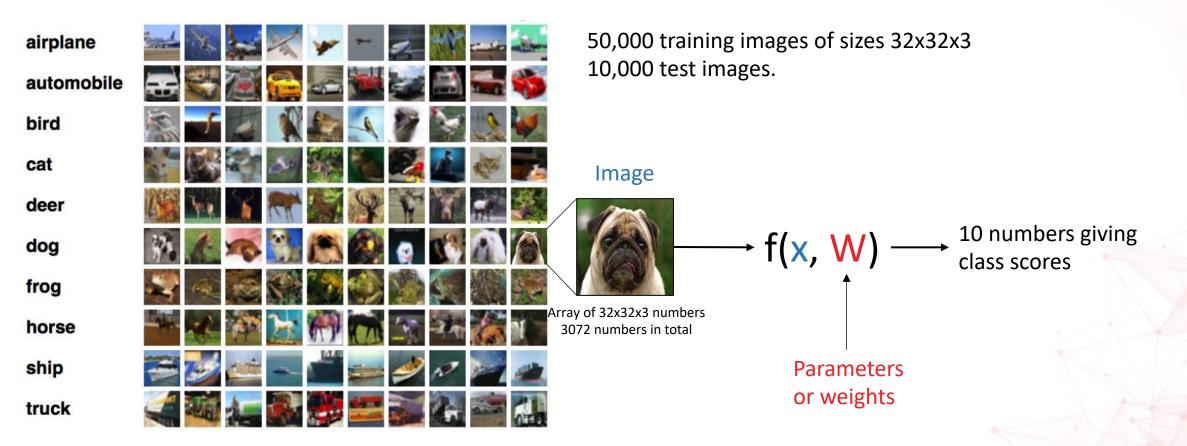
Part II

Linear Classifier

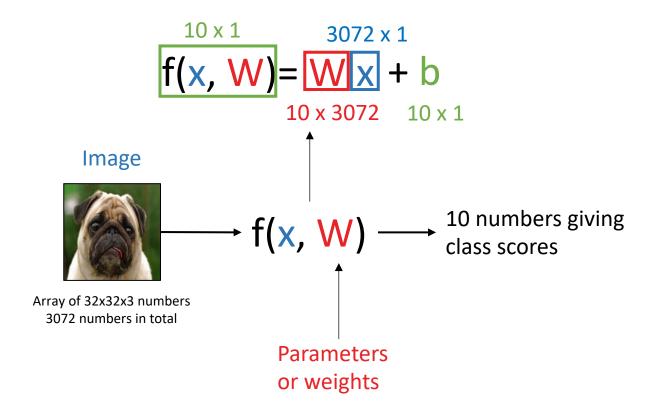
July 2, 2019

Linear Classifier

Recall CIFAR 10

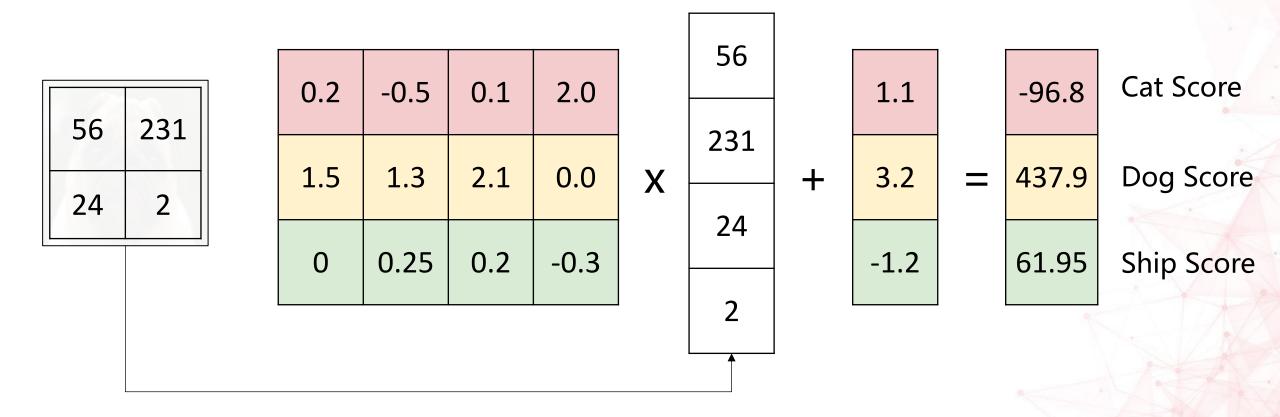


Linear Classifier

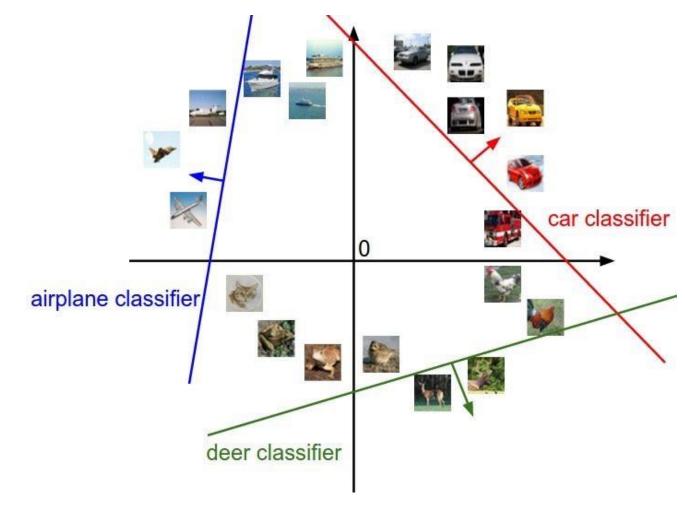


An Example of Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

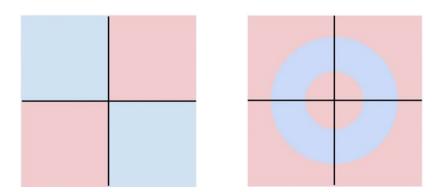


Linear Classifiable



Not Linearly Classifiable Cases

V



Part III

Loss Functions and Optimization

Things TODO in Linear Classifier

- Quantify the Classification Scores
 - Loss Function
- Find the Parameters Effectively
 - Optimization

Loss Functions

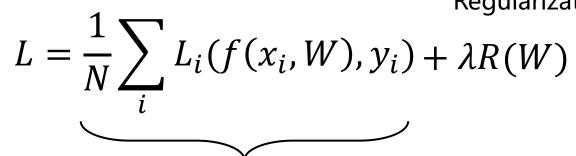
What is Loss Function?

• A loss function tells how good our current classifier is.

- Given a dataset of examples: $\{(x_i, y_i)\}_{i=1}^N$
- Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Regularization

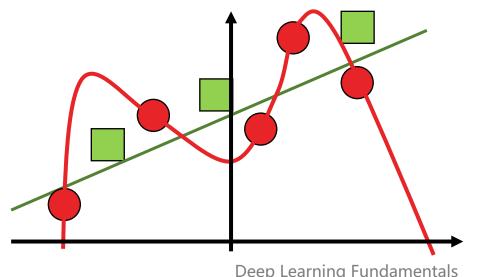


Regularization: Model should be "simple", so it works on test data

Occam's Razor:

"Among competing hypotheses, the simplest is the best" William of Ockham, 1285 - 1347

Data Loss: Model predictions should match training data



Regularization

- Common Regularization
 - L2 Regularization: $R(W) = \sum_{j=0}^{p} \beta_j^2$
 - L1 Regularization: $R(W) = \sum_{j=0}^{p} |\beta_j|$
 - Elastic net (L1 + L2): $R(W) = \alpha \sum_{j=0}^{p} \beta_j^2 + \sum_{j=0}^{p} |\beta_j|$
 - Max norm regularization
 - Dropout
 - Fancier: Batch normalization, stochastic depth

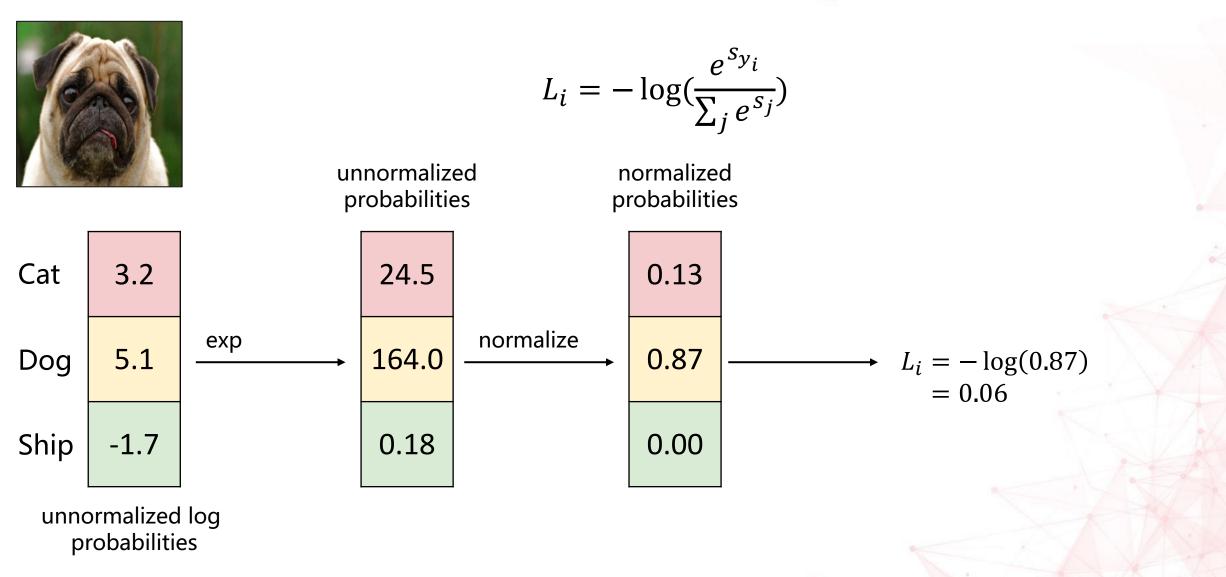
Softmax Classifier

Scores = unnormalized log probabilities of the classes

$$P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $s = f(x_i, \mathbf{W})$

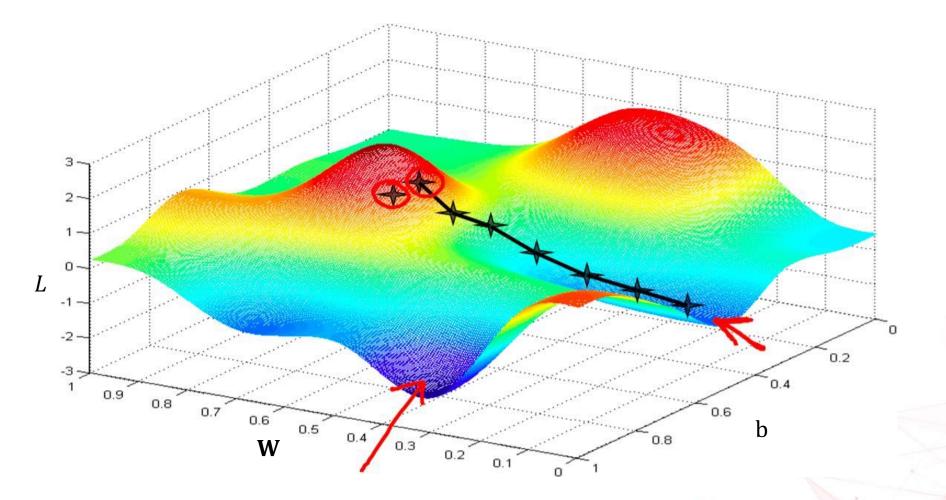
3.2Cat ScoreWant to maximize the log likelihood (loss function) to minimize the
negative log likelihood of the correct class:
$$L_i = -\log P(Y = y_i | X = x_i)$$
-1.7Ship ScoreIn Summary: $L_i = -\log(\frac{e^{Sy_i}}{\sum_j e^{S_j}})$

Softmax Classifier



Optimization

• How to find the best **W** and b?



Optimization: Gradient Decent

Stochastic Gradient Descent (SGD)

•
$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

•
$$\nabla_{W} L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}(x_{i}, y_{i}, W) + \lambda \nabla_{W} R(W)$$

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 64)
    weights_grad = eval_gradient(loss_func, data_batch, weights)
    weights -= weights_grad * learning_rate
```


Part IV

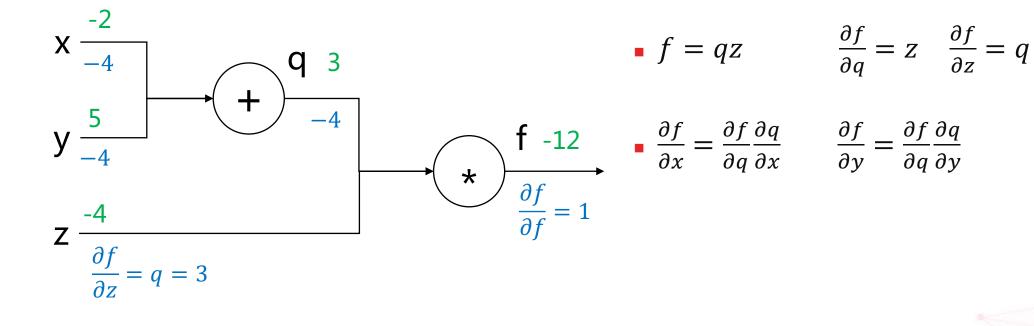
Backpropagation and Neural Networks

Backpropagation

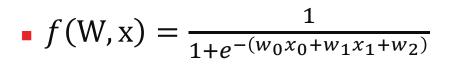
- How to get the gradient?
- f(x, y, z) = (x + y)z

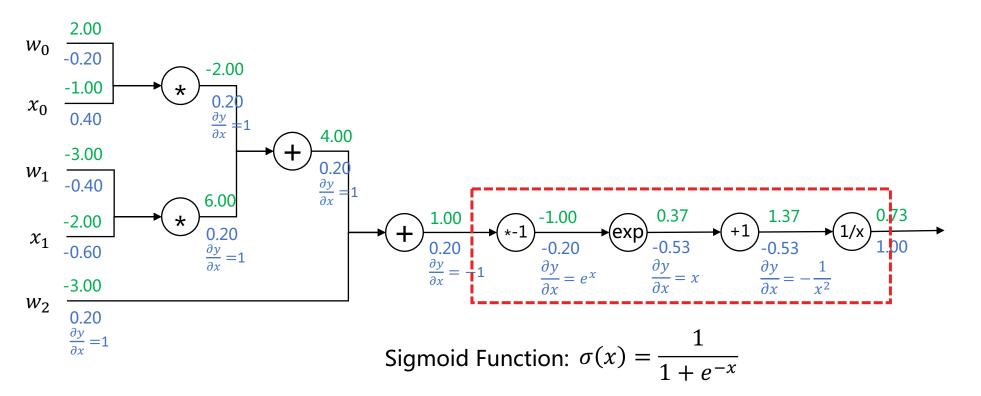
■ Given x = -2, y = 5, z = -4

• q = x + y $\frac{\partial q}{\partial x} = 1$ $\frac{\partial q}{\partial y} = 1$



Backpropagation

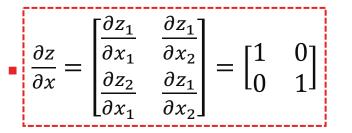




Backpropagation

- Let z = x + y. What if x and y are vectors?
 - $x = (x_1, x_2), y = (y_1, y_2)$
 - $z = (x_1 + y_1, x_2 + y_2)$

•
$$\frac{\partial z_1}{\partial x_1} = 1$$
, $\frac{\partial z_1}{\partial x_2} = 0$, $\frac{\partial z_2}{\partial x_1} = 0$, $\frac{\partial z_1}{\partial x_2} = 1$



Jacobian matrix

Backpropagation

- Let y = max(0, x) and x is a vector of size 4096. What is the size of the Jacobian matrix?
 - 4096×4096
- What the size of the Jacobian matrix if we use a minibatch of size 100?
 - 409600×409600
- What does the Jacobian matrix look like?

 $\begin{bmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{bmatrix}$

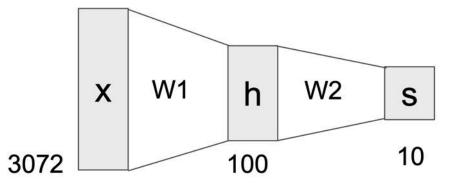
Backpropagation

• $f(x, \mathbf{W}) = \|\mathbf{W}x\|^2 = \sum_{i=1}^n (Wx)_i^2$

 \bigtriangledown

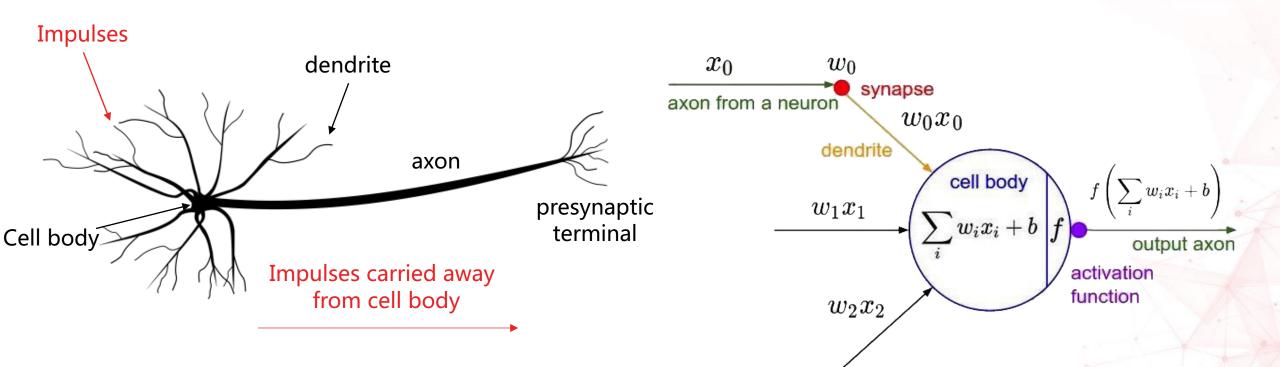
Neural Networks

- Linear Score Function
 - $f = \mathbf{W}x$
- 2-Layer Neural Network
 - $f = \mathbf{W_2} \max(0, \mathbf{W_1} x)$
- 3-Layer Neural Network
 - $f = \mathbf{W_3} \max(\mathbf{W_2} \max(0, \mathbf{W_1} x))$

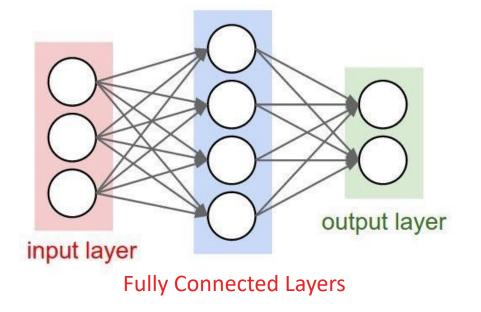


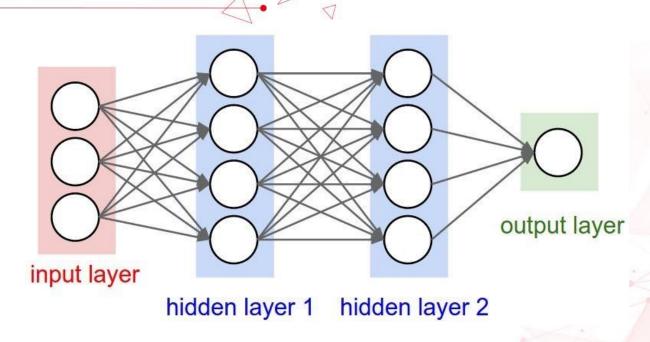
Neural Networks

7



Neural networks: Architectures





- "2-layer Neural Net"
- "1-hidden-layer Neural Net"

- "3-layer Neural Net"
- "2-hidden-layer Neural Net"

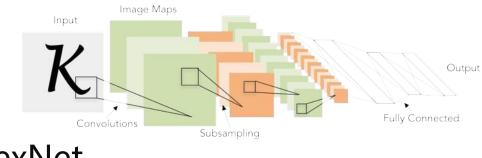
Part V

Convolutional Neural Networks

Important Events of CNNs

LeNet-5

Used for Document Classification (1998)



AlexNet

Used for Image Classification (2012)
• Used for Image Classification (2012)

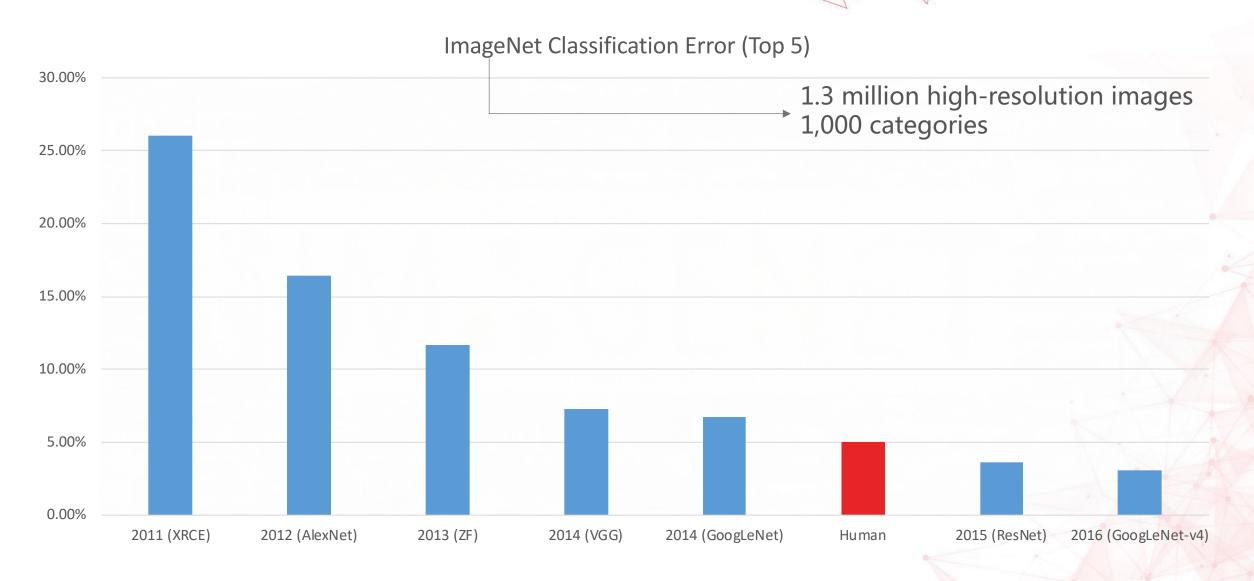
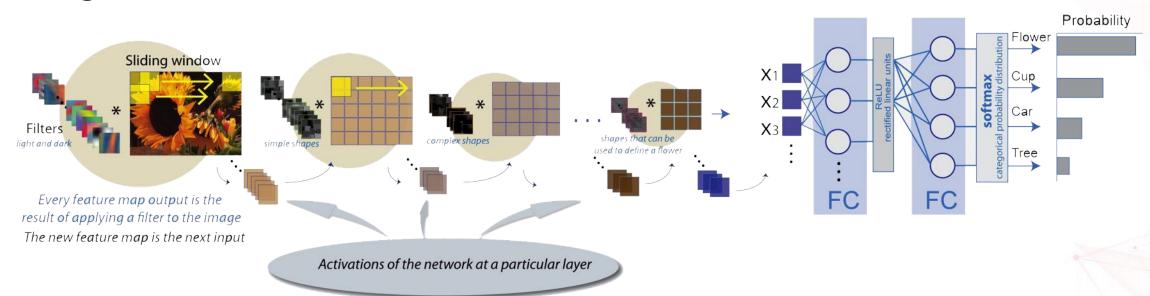
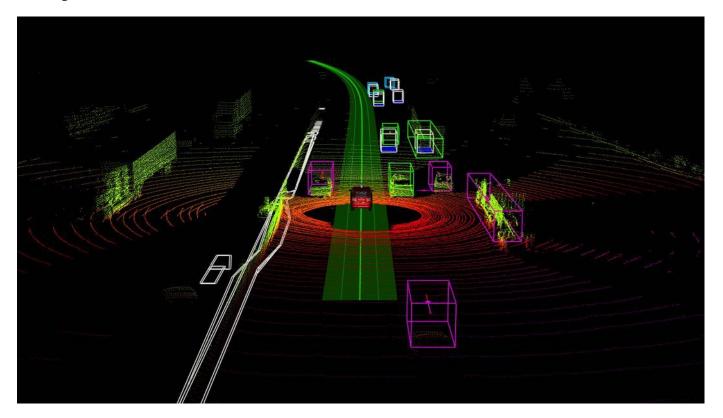


Image Classification



Object Detection in 2D/3D

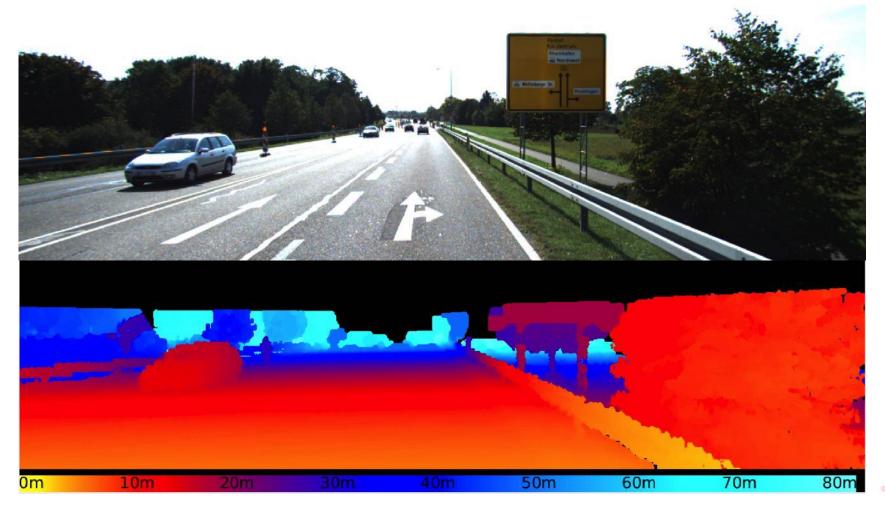


Semantic Segmentation

Pose Estimation

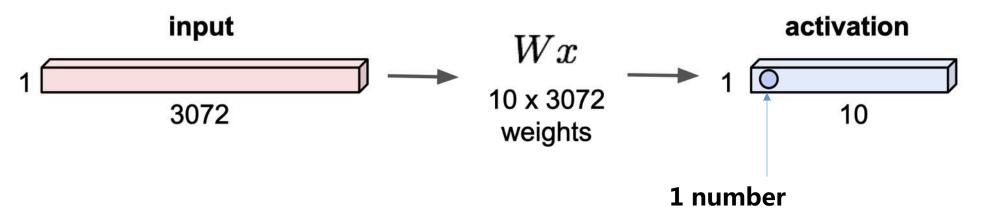
Image Super Resolution

Depth Estimation

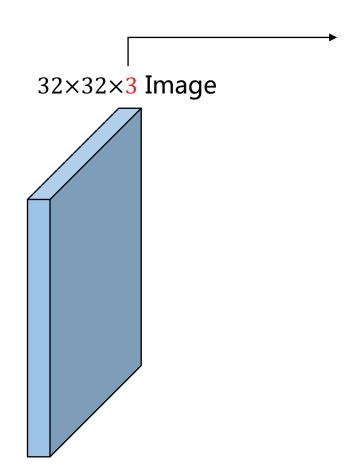


Recap: Fully Connected Layer

• Given an image of size 32×32×3



the result of taking a dot product between a row of W and the input (a 3072-dimensional dot product)

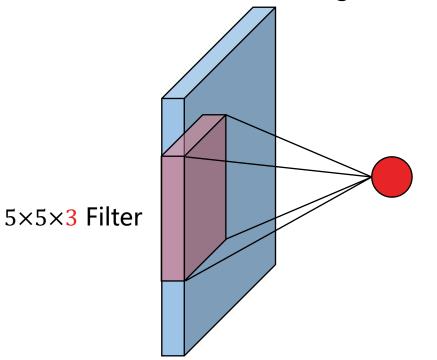


Filters always extend the full depth of the input volume

5×5×3 Filter

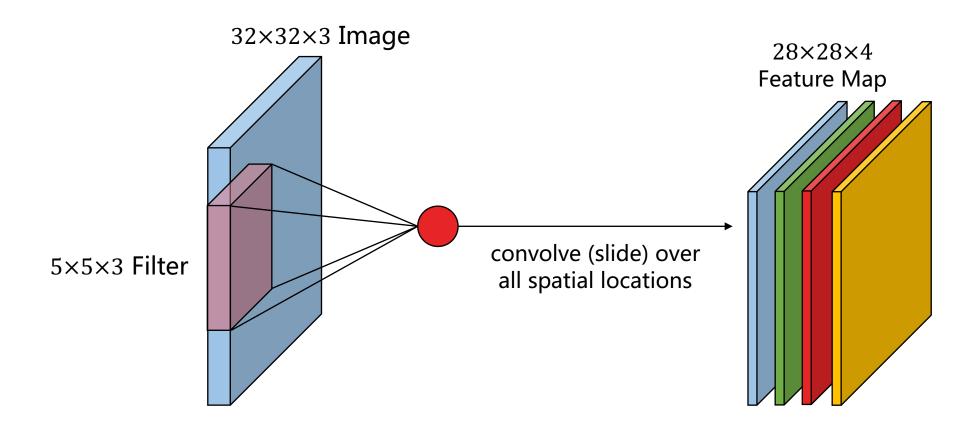
Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32×32×3 Image



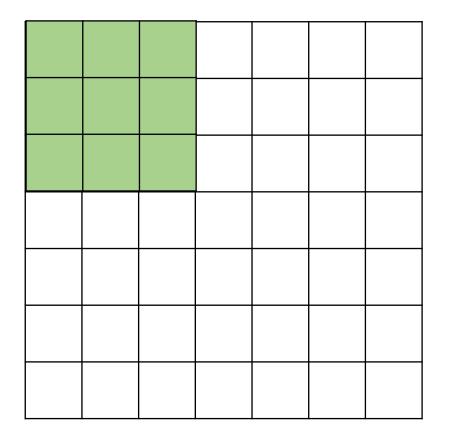
1 number

the result of taking a dot product between the filter and a small $5 \times 5 \times 3$ chunk of the image (i.e. 75-dimensional dot product + bias)



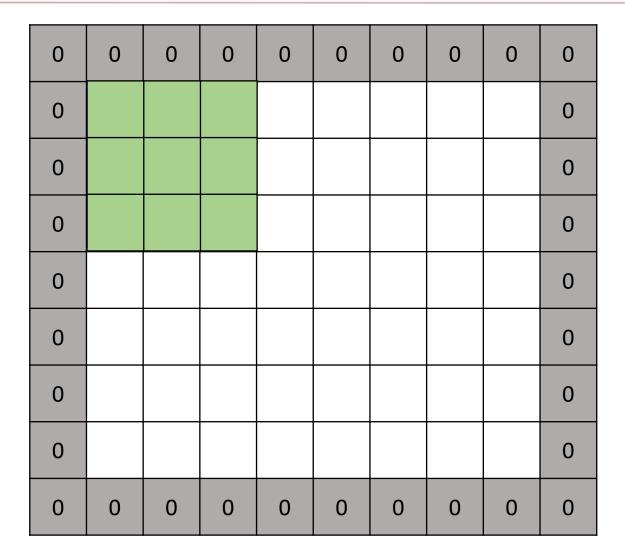
Conclusion: If we have $45 \times 5 \times 3$ filters, we can get 4 separate feature maps.

The number of parameters of the convolutional layer is $5 \times 5 \times 3 \times 4 + 5 \times 3 \times 4 = 360$.



Assume the input is of size 7×7, and the filter is of size 3×3. With Stride = 1: Output size is 5×5. With Stride = 2: Output size is 3×3. With Stride = 3: Cannot apply 3×3 filter on 7×7 input with stride 3.

Output Size = (Input Size – Filter Size) / Stride + 1



Sometimes, we pad zeros to the border. Assume the input is of size 7×7 , and the filter is of size 3×3 .

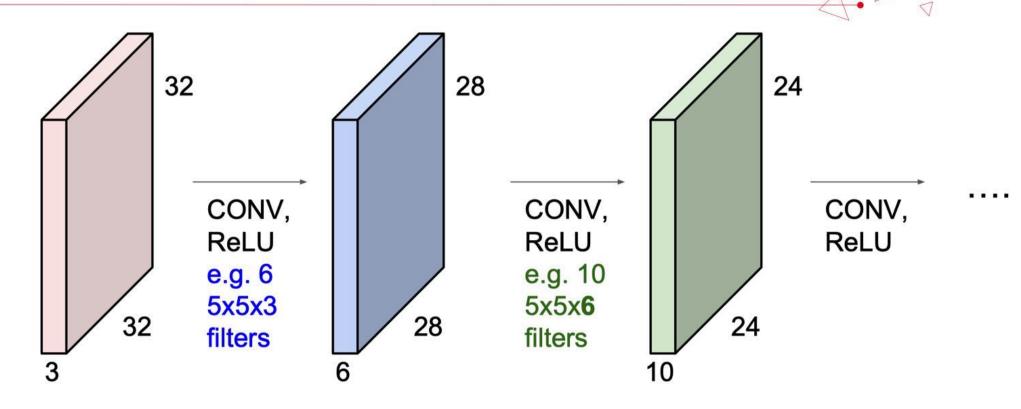
With Stride = 3 and pad = 1 Output size is 3×3 .

UPDATE:

Output Size =

(Input Size – Filter Size + 2 * Padding) / Stride + 1

Convolutional Neural Networks

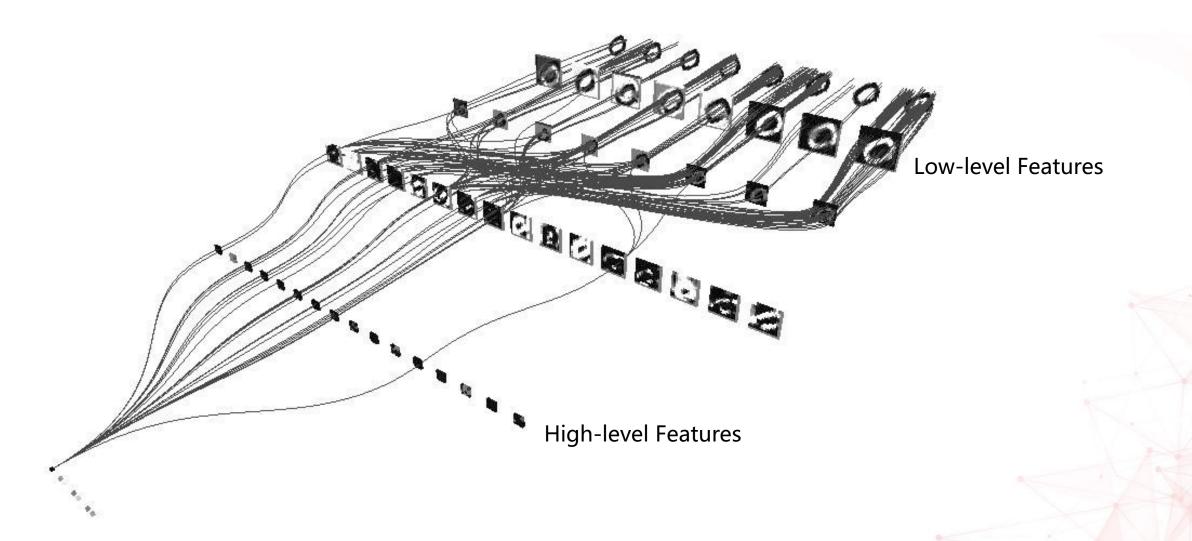


ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Shrinking too fast is not good, doesn' t work well.

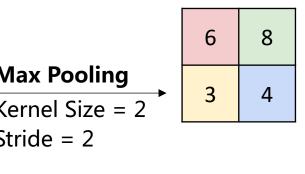
Convolutional Neural Networks

7

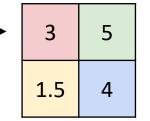


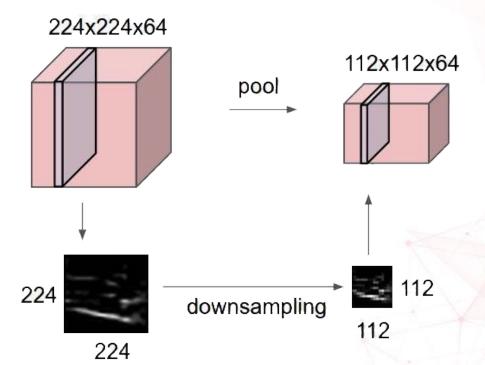
Pooling Layer

N	3	2	1	0	
K S ^t	8	7	6	5	
А	3	1	2	3	
K S ⁺	4	3	1	0	



Avg. Pooling Kernel Size = 2 Stride = 2





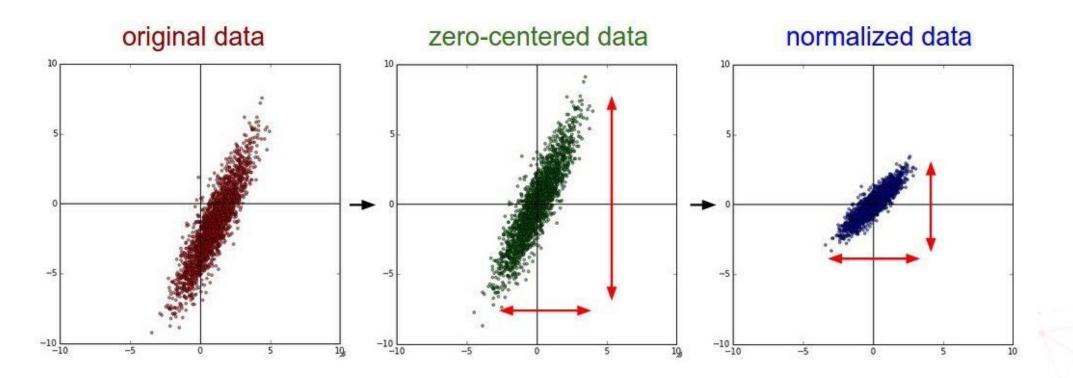
7

How to Train a Neural Network?

- Babysitting the Learning Process
 - Data Preprocessing
 - Choose the architecture (Convolutional Layers, Activation functions, Losses)
 - Weights initialization
 - Optimizers used for updating parameters
- Optional
 - Data Augmentation
 - Batch Normalization
 - Dropout

Data Preprocessing

Normalize



Sigmoid

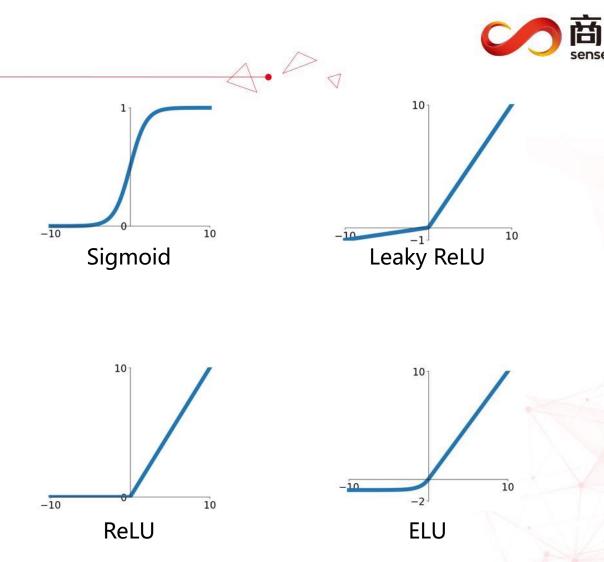
• $\sigma(x) = \frac{1}{1 + e^{-x}}$

ReLU

- $f(x) = \max(0, x)$
- Leaky ReLU
 - $f(x) = \max(0.01x, x)$

ELU

•
$$f(x) = \begin{cases} x & x \ge 0\\ \alpha(e^x - 1) & x < 0 \end{cases}$$



Sigmoid

- $\sigma(x) = \frac{1}{1 + e^{-x}}$
- Squashes numbers to range [0,1]

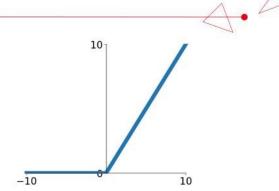
- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zero-centered
- exp() is a bit compute expensive

-10

10

ReLU

• $f(x) = \max(0, x)$

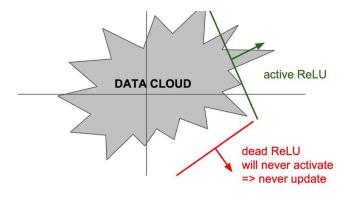


Characteristics

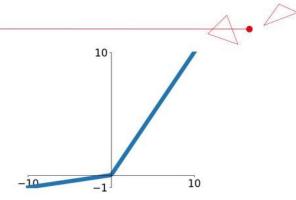
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

Issues

- Not zero-centered output
- dead ReLU



- Leaky ReLU
 - $f(x) = \max(0.01x, x)$



Characteristics

- Does not saturate
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- will not "die"

ELU

•
$$f(x) = \begin{cases} x & x \ge 0\\ \alpha(e^x - 1) & x < 0 \end{cases}$$

10 10

10

- Characteristics
 - All benefits of ReLU
 - Closer to zero mean outputs
 - Negative saturation regime compared with Leaky ReLU adds some robustness to noise

Issues

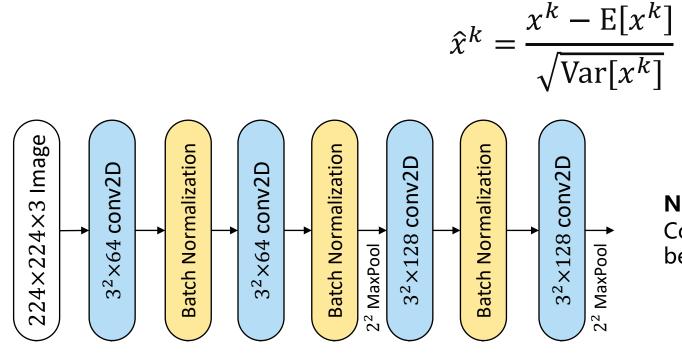
Computation requires exp()

Weights Initialization

- What if all the initial values are set to 0?
 - Output the same thing and have the same gradient.
- What if initial values are samples from a Gaussian distribution $\sigma(0, 0.01)$?
 - Works small for small networks, but problems with deeper networks.
- How to solve the problem?
 - Xavier initialization
 - Kaiming initialization
 - • •

Batch Normalization

- "Do you want unit gaussian activations? just make them so."
- Consider a batch of activations at some layer. To make each dimension unit gaussian, apply:



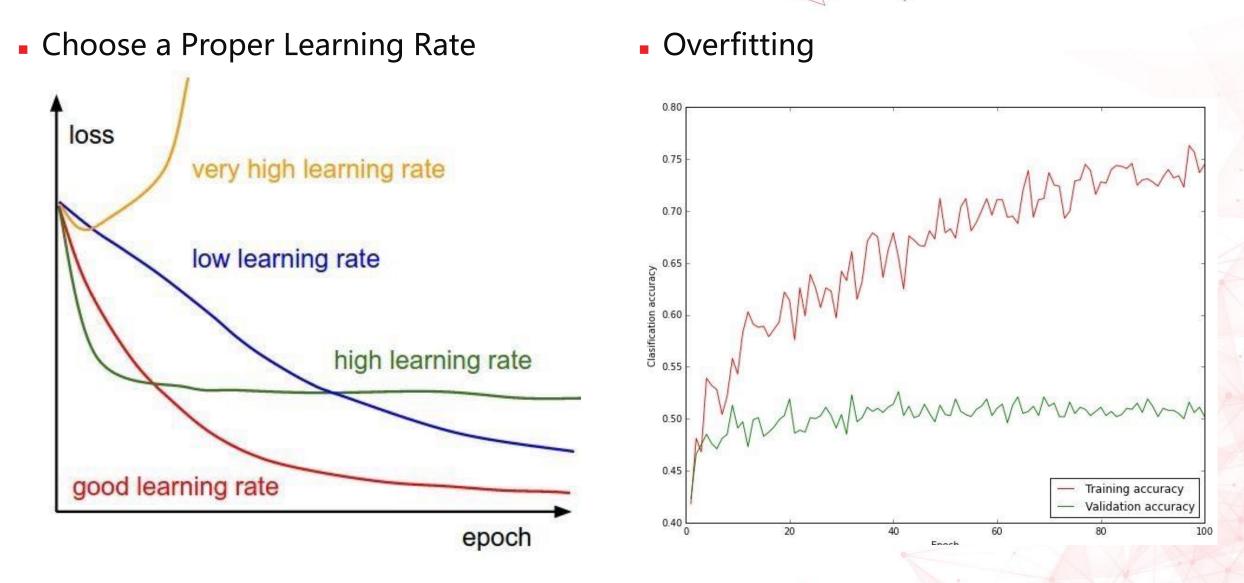
Note: BNs are usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

Babysitting the Training Process

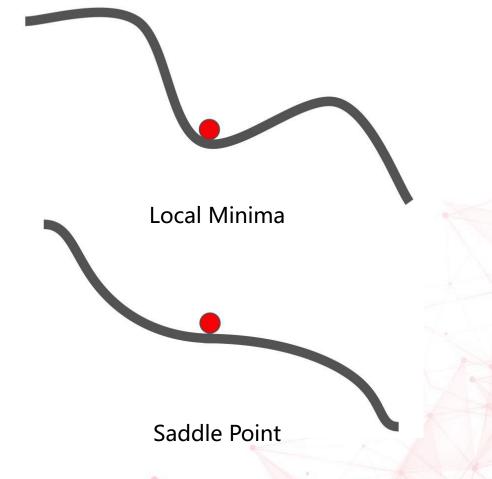


Optimizers

SGD

- $g_t = \nabla_{\theta_{t-1}} f(\theta_{t-1})$
- $\nabla_{\theta_t} = -\eta g_t$
- SGD + Momentum
 - $m_t = \mu m_{t-1} + g_t$
 - $\nabla \theta_t = -\eta m_t$
 - Typically, $\mu = 0.9$ or 0.99

Problems with SGD



Optimizers

AdaGrad

• $n_t = n_{t-1} + g_t^2$

•
$$\nabla \theta_t = -\frac{\eta}{\sqrt{n_t + \epsilon}} \cdot g_t$$

- RMSProp
 - $n_t = v n_{t-1} + (1 v) g_t^2$

•
$$\nabla \theta_t = -\frac{\eta}{\sqrt{n_t + \epsilon}} \cdot g_t$$

Adam

•
$$m_t = \mu m_{t-1} + (1 - \mu)g_t$$

V

- $n_t = v n_{t-1} + (1 v) g_t^2$
- $\bullet \ \widehat{m_t} = \frac{m_t}{1 \mu^t}$

$$\widehat{n_t} = \frac{n_t}{1 - v^t}$$

•
$$\nabla \theta_t = -\frac{\widehat{m_t}}{\sqrt{\widehat{n_t} + \epsilon}} \cdot \eta$$

Thank You!