3D Object and Scene Reconstruction Meets Neural Networks

Haozhe Xie

Tencent AI Lab

Haozhe Xie

3D Object and Scene Reconstruction Meets Neural Networks May 15, 2022

Background

- Al endow machines with the ability to perceive the real-world
 - Rapid development in 2D image understanding
 - Requires 3D information during the interaction with the 3D objects

2

Background

- Challenges
 - III-Posed Problem
 - Occlusion

- Opportunities
 - Rapid development in neural networks
 - Large-scale 3D datasets available

Outline

- Single-view 3D Object Reconstruction
 - From an RGB image
 - From stereo RGB images
 - From a depth image
- Multi-view 3D Object Reconstruction
- Multi-view 3D Scene Reconstruction

Single-view 3D Object Reconstruction

Overview

Xie et al. Pix2Vox: Context-aware 3D Reconstruction from Single and Multi-view Images. ICCV 2019.

Evaluation Metrics

Intersection over Union

• IoU = $\frac{\sum_{i,j,k} I(p_{(i,j,k)} > t) I(gt_{(i,j,k)} > t)}{\sum_{i,j,k} I(I(p_{(i,j,k)} > t) + I(gt_{(i,j,k)} > t))}$

- where
 - I(·) is the indicator
 - *t* is the threshold for binarize
 - *p*_(*i*,*j*,*k*) is the prediction at (i, j, k)
 - $gt_{(i,j,k)}$ is the GT at (i, j, k)

Experimental Results on ShapeNet

Category	3D-R2N2	OGN	DRC	PSGN	Pix2Vox-F	Pix2Vox-A
airplane	0.513	0.587	0.571	0.601	0.600	0.684
bench	0.421	0.481	0.453	0.550	0.538	0.616
cabinet	0.716	0.729	0.635	0.771	0.765	0.792
car	0.798	0.828	0.755	0.831	0.837	0.854
chair	0.466	0.483	0.469	0.544	0.535	0.567
display	0.468	0.503	0.419	0.552	0.511	0.537
lamp	0.381	0.398	0.415	0.462	0.435	0.443
speaker	0.662	0.637	0.609	0.737	0.707	0.714
rifle	0.544	0.593	0.608	0.604	0.598	0.615
sofa	0.628	0.646	0.606	0.708	0.687	0.709
table	0.513	0.536	0.424	0.606	0.587	0.601
telephone	0.661	0.702	0.413	0.749	0.770	0.776
watercraft	0.513	0.632	0.556	0.611	0.582	0.594
Avg. loU	0.560	0.596	0.545	0.640	0.634	0.661

Experimental Results on ShapeNet

Haozhe Xie

Overview

Xie et al. Toward 3D Object Reconstruction from Stereo Images. Neurocomputing (463) 444-453, 2021.

The StereoShapeNet Dataset

- The StereoShapeNet Dataset
 - Including 1,052,976 stereo image pairs, with depth and disparity maps
 - Viewpoint Parameters
 - Azimuth: $\theta_{az} \in [0^\circ, 360^\circ)$
 - Elevation: $\theta_{el} \in [-30^\circ, 30^\circ]$
 - Camera Parameters
 - Focal Length 35 mm
 - Baseline 130 mm
 - Image Resolution 224 × 224

- Evaluation Metrics
 - Intersection over Union

• IoU = $\frac{\sum_{i,j,k} I(p_{(i,j,k)} > t) I(gt_{(i,j,k)} > t)}{\sum_{i,j,k} I(I(p_{(i,j,k)} > t) + I(gt_{(i,j,k)} > t))}$

Chamfer Distance

•
$$CD = \frac{1}{n_{gt}} \sum_{p \in \mathbf{P}} \min_{q \in \widehat{\mathbf{P}}} ||p - q||_2^2 + \frac{1}{n_p} \sum_{p \in \widehat{\mathbf{P}}} \min_{q \in \mathbf{P}} ||p - q||_2^2$$

where

•
$$\mathbf{P} = \{(x_i, y_i, z_i)\}_{i=1}^{n_{gt}}$$
 denotes the prediction

•
$$\widehat{\mathbf{P}} = \{(x_i, y_i, z_i)\}_{i=1}^{n_p}$$
 denotes the GT

Experimental Results on StereoShapeNet

Category	Matryoshka	Matryoshka*	Pix2Vox	LSM	Stereo2Voxel
airplane	0.557	0.535	0.686	0.621	0.709
bench	0.524	0.473	0.566	0.517	0.622
cabinet	0.766	0.763	0.754	0.691	0.784
car	0.827	0.810	0.811	0.796	0.830
chair	0.559	0.514	0.604	0.595	0.669
display	0.635	0.614	0.586	0.547	0.692
lamp	0.424	0.411	0.449	0.469	0.521
speaker	0.697	0.727	0.658	0.670	0.701
rifle	0.540	0.557	0.652	0.682	0.690
sofa	0.702	0.679	0.714	0.651	0.770
table	0.559	0.503	0.570	0.566	0.635
telephone	0.759	0.847	0.831	0.694	0.866
watercraft	0.587	0.595	0.558	0.592	0.645
Avg. loU	0.626	0.603	0.652	0.632	0.702

Experimental Results on StereoShapeNet

Experimental Results on StereoShapeNet

Category	PSGN	PSGN*	AtlasNet	AtlasNet*	Stereo2Point
airplane	0.826	0.699	0.807	0.796	0.534
bench	1.789	1.695	1.996	1.796	1.182
cabinet	2.360	1.853	1.756	1.692	1.229
car	1.295	0.882	1.045	1.036	0.779
chair	2.004	1.594	1.837	1.858	1.267
display	2.815	2.238	2.386	2.146	1.356
lamp	3.973	3.038	4.142	4.118	3.001
speaker	3.868	2.691	2.839	2.869	2.124
rifle	0.790	0.763	0.818	0.874	0.524
sofa	2.625	2.086	1.664	1.656	1.199
table	1.889	1.500	1.892	1.916	1.337
telephone	1.445	1.158	1.156	1.250	0.896
watercraft	2.029	1.495	1.712	1.524	1.027
Avg. CD	1.916	1.493	1.704	1.689	1.185

Experimental Results on StereoShapeNet

- The difference between RGB and depth images
 - RGB Image I $\in \mathbb{R}^{H \times W \times 3}$: with RGB information
 - Depth Image $\mathbf{D} \in \mathbb{R}^{H \times W \times 1}$: with XYZ information

•
$$x = \frac{uz}{f_x} y = \frac{vz}{f_y}$$

- where
 - (*u*, *v*) is the coordinates in an image
 - (*x*, *y*, *z*) is the 3D coordinates
 - f_x , f_y are the focal length

- Related work
 - 2D Convolutional Neural Networks

- Drawbacks
 - Cannot explicitly regress the 3D coordinates of an object

Our Solution

Coarse Shape Reconstruction

Delicate Shape Reconstruction

- Three differentiable operations
 - Gridding
 - Gridding Reverse
 - Cubic Feature Sampling

- Two sub-networks
 - 3D CNN
 - MLP

Xie et al. GRNet: Gridding Residual Network for Dense Point Cloud Completion. ECCV 2020.

Gridding

The value of the vertex w_i can be computed as

$$w_i = (1 - |x_i - x|)(1 - |y_i - y|)(1 - |z_i - z|)$$

where (x_i, y_i, z_i) and (x, y, z) are the coordinates of w_i and p_i , respectively.

3D CNN

Gridding Reverse

The coordinate of the generated point p_i^c can be computed as

$$\boldsymbol{p}_i^c = \frac{\sum_i w_i' \, \boldsymbol{v}_i}{\sum_i w_i'}$$

where the v_i and w'_i be the coordinate and value of the vertex i (i = 1, ..., 8).

as:

Cubic Feature Sampling

Therefore, the features f_i^c for point p_i^c can be computed

$$f_i^c = [f_1^v, f_2^v, \dots, f_8^v]$$

MLP

1.4

- Evaluation Metrics
 - Chamfer Distance

•
$$CD = \frac{1}{n_{gt}} \sum_{p \in \mathbf{P}} \min_{q \in \widehat{\mathbf{P}}} ||p - q||_2^2 + \frac{1}{n_p} \sum_{p \in \widehat{\mathbf{P}}} \min_{q \in \mathbf{P}} ||p - q||_2^2$$

where

•
$$\mathbf{P} = \{(x_i, y_i, z_i)\}_{i=1}^{n_{gt}}$$
 denotes the prediction

•
$$\widehat{\mathbf{P}} = \{(x_i, y_i, z_i)\}_{i=1}^{n_p}$$
 denotes the GT

Experimental Results on ShapeNet

Category	AltasNet	PCN	FoldingNet	TopNet	MSN	GRNet
airplane	1.753	1.400	3.151	2.152	1.543	1.531
cabinet	5.101	4.450	7.943	5.623	7.249	3.620
car	3.237	2.445	4.676	3.513	4.711	2.752
chair	5.226	4.838	9.225	6.436	4.539	2.945
lamp	6.342	6.238	9.324	7.502	6.479	2.649
sofa	5.990	5.129	8.895	6.949	5.894	3.613
table	4.359	3.569	6.691	4.784	3.797	2.552
watercraft	4.177	4.062	7.325	4.359	3.853	2.122
Avg. CD	4.523	4.016	7.142	5.154	4.758	2.723

Experimental Results on ShapeNet

Application: Autonomous Driving

Haozhe Xie

Xie et al. Pix2Vox++: Multi-scale Context-aware 3D Object Reconstruction from Single and Multiple Images. IJCV 128 (12) 2919-2935, 2020.

Multi-scale Context-aware Fusion

Overview

- Context: $C = \{c_t | c_t \in \mathbb{R}^{9 \times r \times r \times r}\}$
- Score Normalization: $s_t = \frac{\exp(m_t^{(i,j,k)})}{\sum_{p=1}^n \exp(m_p^{(i,j,k)})}$

- Scores: $\mathcal{M} = \{m_t | m_t \in \mathbb{R}^{r \times r \times r}\}$
- $\mathbf{v}^{\mathrm{f}} = \sum_{t=1}^{n} s_t v_t^c$

Experimental Results on ShapeNet

# views	3D-R2N2	AttSets	Pix2Vox++
1 view	0.560	0.642	0.670
2 views	0.603	0.662	0.695
3 views	0.617	0.670	0.704
4 views	0.625	0.675	0.708
5 views	0.634	0.677	0.711
8 views	0.635	0.677	0.715
12 views	0.636	0.688	0.717
16 views	0.636	0.692	0.718
20 views	0.636	0.693	0.719

Experimental Results on ShapeNet

Haozhe Xie

3D Object and Scene Reconstruction Meets Neural Networks May 15, 2022

Overview

Output Mask: \mathbf{M}_t

Xie et al. Efficient Regional Memory Network for Video Object Segmentation. CVPR 2021.

• 6D Pose Estimation

• The center **C** of the 3D bounding box

•
$$\mathbf{C} = \mathbf{R}^{-1} d \frac{\mathbf{K}^{-1} [\mathbf{c}^{b} + \delta, 1]^{T}}{\|\mathbf{K}^{-1} [\mathbf{c}^{b} + \delta, 1]^{T}\|_{2}}$$
, where \mathbf{c}^{b} is the center of the 2D bounding box

Nie et al. Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image. CVPR 2020.

Real-world Scene Captured with a ZED Camera

Real-world Scene Captured with a ZED Camera

Real-world 3D Scene Reconstruction

Thank You!

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Haozhe Xie

3D Object and Scene Reconstruction Meets Neural Networks May 15, 2022