AdaBoost, short for “Adaptive Boosting”, is a machine learning meta-algorithm formulated by Yoav Freund and Robert Schapire who won the Gödel Prize in 2003 for their work. The output of the other learning algorithms (weak learners) is combined into a weighted sum that represents the final output of the boosted classifier.
AdaBoost is adaptive in the sense that subsequent weak learners are tweaked in favor of those instances misclassified by previous classifiers. AdaBoost is sensitive to noisy data and outliers and is quite robust to overfitting.